skip to main content


Search for: All records

Creators/Authors contains: "Law, Stephanie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bi 2 Se 3 is a widely studied 3D topological insulator having potential applications in optics, electronics, and spintronics. When the thickness of these films decreases to less than approximately 6 nm, the top and bottom surface states couple, resulting in the opening of a small gap at the Dirac point. In the 2D limit, Bi2Se3 may exhibit quantum spin Hall states. However, growing coalesced ultrathin Bi2Se3 films with a controllable thickness and typical triangular domain morphology in the few nanometer range is challenging. Here, we explore the growth of Bi2Se3 films having thicknesses down to 4 nm on sapphire substrates using molecular beam epitaxy that were then characterized with Hall measurements, atomic force microscopy, and Raman imaging. We find that substrate pretreatment—growing and decomposing a few layers of Bi2Se3 before the actual deposition—is critical to obtaining a completely coalesced film. In addition, higher growth rates and lower substrate temperatures led to improvement in surface roughness, in contrast to what is observed for conventional epitaxy. Overall, coalesced ultrathin Bi2Se3 films with lower surface roughness enable thickness-dependent studies across the transition from a 3D-topological insulator to one with gapped surface states in the 2D regime.

     
    more » « less
  2. Breaking the time-reversal symmetry on the surface of a topological insulator can open a gap for the linear dispersion and make the Dirac fermions massive. This can be achieved by either doping a topological insulator with magnetic elements or proximity-coupling it to magnetic insulators. While the exchange gap can be directly imaged in the former case, measuring it at the buried magnetic insulator/topological insulator interface remains to be challenging. Here, we report the observation of a large nonlinear Hall effect in iron garnet/Bi2Se3 heterostructures. Besides illuminating its magnetic origin, we also show that this nonlinear Hall effect can be utilized to measure the size of the exchange gap and the magnetic-proximity onset temperature. Our results demonstrate the nonlinear Hall effect as a spectroscopic tool to probe the modified band structure at magnetic insulator/topological insulator interfaces. 
    more » « less
  3. null (Ed.)